Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation – a review
نویسندگان
چکیده
Hydrogen becomes a promising alternative energy carrier to fossil fuels since it is clean, renewable, contains high energy content and does not contribute to greenhouse effect. Therefore, using cheap or renewable resources, such as lignocellulosic materials, as the feedstock for hydrogen production, in particular, dark fermentative hydrogen production has a great potential to give major contribution to future energy supply. The main challenges are the low hydrogen yield arising from poor efficiency on direct microbial assimilation of cellulosic materials. Considerable research efforts have been made to improve the pretreatment and hydrolysis of lignocellulosic materials. Development of novel and effective cellulase enzymes, optimization and improvement of cellulase system, as well as engineering approaches on cellulose pretreatment and saccharification are gaining increasing interest. Information from genomics and molecular genetics combined with improved genetic engineering offer a wide range of possibilities for enhancing performance of cellulose feedstock utilization and biohydrogen production. This study reviews key technologies and variables to be considered during biohydrogen production from lignocellulosic feedstock.
منابع مشابه
Dark Hydrogen Fermentation From Paper Mill Effluent (PME): The influence of Substrate Concentration and Hydrolysis
Paper mill effluent (PME) was used as an organic feedstock for production of biohydrogen via dark fermentation using heat-shock pretreated anaerobic sludge under mesophilic conditions. The influence of substrate concentration (5, 10 and 15 g-COD/L) and the initial pH (5 and 7) on the efficiency of dark hydrogen fermentation from PME were investigated. The highest hydrogen yield of 55.4 mL/g-COD...
متن کاملHydrolysates of lignocellulosic materials for biohydrogen production
Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials...
متن کاملBiohydrogen Production from Starch Residues
This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engine...
متن کاملFood waste and food processing waste for biohydrogen production: a review.
Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in g...
متن کاملA critical review on factors influencing fermentative hydrogen production.
Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reacto...
متن کامل